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Abstract The main purpose of the work was to
explore the bursting oscillations as well as the mech-
anism in a periodically excited piecewise-linear sys-
tem with an order gap between the exciting frequency
and the natural frequency. Based on the typical Chua’s
circuit, a periodically excited model is established,
in which the nonlinear characteristics of the resistor
are expressed in terms of a continuous function with
multiple piecewise-linear segments. By analyzing the
nominal equilibrium orbits of the linear subsystems in
different regions divided by the break points, critical
conditions corresponding to regular and non-smooth
bifurcations are derived. Two typical cases in which
the trajectories pass across different numbers of non-
smooth boundaries are investigated, resulting in differ-
ent forms of bursting oscillations. It is pointed that not
only the properties of the nominal equilibrium orbits
in different regions but also the non-smooth bound-
aries may influence the bursting attractors. Further-
more, unlike the connections between quiescent states
(QSs) and spiking states (SPs) via regular bifurcations
in smooth vector fields, for the bursting oscillations in
piecewise-linear systems, the transitions between QSs
and SPs may be caused by non-smooth bifurcations or
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the abrupt alternations between two different subsys-
tems on both sides of the non-smooth boundaries.

Keywords Bursting oscillation · Non-smooth
bifurcation · Piecewise-linear ·Bifurcation mechanism

1 Introduction

Many dynamical systems in natural and engineering
problems involve two timescales [1,2], which often
behave in periodic states characterized by a combina-
tion of relatively large-amplitude and nearly harmonic
small-amplitude oscillations, conventionally denoted
by NK with N and K corresponding to large- and
small-amplitude oscillations, respectively [3,4]. Gen-
erally, the system is in a quiescent state (QS) stagewhen
all the variables are at rest or exhibit small-amplitude
oscillations [5]. The coupling of two timescales may
lead the systems to spiking state (SP), in which the
variables may behave in large-amplitude oscillations
[6,7]. Bursting phenomena can be observed when the
variables alternate betweenQS and SP. Two important
bifurcations associated with the bursting exist: bifurca-
tion of a quiescent state to repetitive spiking oscillations
and bifurcation of a spiking state to a quiescent state
[8,9].

Since the bursting oscillations in a famous slow–
fast Hodgkin–Huxley model were presented, which
can approach nero activities [10,11], a lot of reports
related to the dynamics with two timescales have been
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published [12,13], in which several types of bursting
oscillations such as the fold/fold [14] and fold/Hopf
[15] bursters have been obtained. However, most of
the results were focused on autonomous systems with
different scales in time domain, in which the vec-
tor fields can be divided into two subsystems, i.e., a
slow subsystem and a fast subsystem [16]. Based on
the so-called slow–fast analysis [17], bursting oscil-
lations may be divided into different types according
to the bifurcation forms between QSs and SPs. How-
ever, for non-autonomous systems, such as periodic
excited systems, when an order gap exists between
the frequency of periodic excitation and natural fre-
quency, implying two scales in frequency domain exist,
no obvious slow and fast subsystem exists, while the
effect of two timescales can also be observed [18],
based on the fact that the trajectories of systems are
related to both the two frequencies [19], behaving in
relaxation oscillations [20]. Since no obvious slow and
fast subsystem exists, the method of slow–fast analysis
cannot be directly employed to approach the mecha-
nism of the bursting. How to explore the characteristics
of multi-mode oscillations in non-autonomous system
still remains an open problem.

For a typical periodically excited dynamical system,
when the exciting term changes on a much smaller
timescale comparing with the change in state variables,
the whole exciting term can be regarded as a slow-
varying parameter, leading to a so-called generalized
autonomous, and a transformed phase portrait can be
employed to explore the influence of the exciting term
on the evolution of the dynamical behavior [21].

Furthermore, when piecewise-linear functions with
multiple segments involve the vector fields, multiple
non-smooth boundaries corresponding to the cross sec-
tions determined by the break points exist, which divide
the phase space into several regions associatedwith dif-
ferent subsystems with different dynamical behaviors
[22,23]. Not only the attractors as well as the bifurca-
tions in the subsystems, but also the non-smooth bifur-
cations for the trajectories passing across the break
points may influence the structures of the bursting
oscillations [24,25]. How to explore the bifurcation
mechanism of the bursting oscillations for such kind
of dynamical systems, especially when the trajectories
pass across different numbers of non-smooth bound-
aries, still needs to be explored.

Here, we try to investigate these problems upon a
relative simple model by introducing a periodically

changed electric current source to excite the typi-
cal Chua’s oscillator [26] in which the characteris-
tics of the resistor can be described by a continuous
piecewise-linear function with multiple segments. By
taking suitable parameter values so that an order gap
exists between the exciting frequency and the natural
frequency, the evolution of the dynamics of the system
is investigated and different types of bursting oscilla-
tions aswell as bifurcationmechanism for the trajectory
passing across different numbers of break points will
be presented.

2 Mathematical model

By introducing a periodically changed electrical cur-
rent source in a typical Chua’s circuit with piecewise-
linear characteristic nonlinear resistor [26], shown in
Fig. 1, the relatedmathematicalmodel can be expressed
as

dV1
dt = 1

C1
[G1(V2 − V1) − g(V1) + IG sin(ωt)],

dV2
dt = 1

C2
[G1(V1 − V2) + iL ],

diL
dt = − 1

L1
V2,

(1)

where iL is the current value passing across two induc-
tors with values L1, V1 and V2 measure the magnitudes
of voltage of the two capacitors with values C1 andC2,
respectively, while G1 = 1/R1 and R1 is the resis-
tance value. IG and ω correspond to the amplitude and
the frequency of the current through the electric source
G with IS = IG sin(ω t). g(V1) = 1

R1
[δV1 + F(V1)]

describes the relationship between the current and the
voltage passing across the nonlinear resistor NR . F(Vi )
is a piecewise-linear function with multiple segments
in symmetry, expressed in the form

F(V1) =

⎧
⎪⎪⎨

⎪⎪⎩

Si (V1 − Ei ), V1 ∈ [Pi , Pi+1], (i = 1, 2, . . .),

S0(V1 − E0), V1 ∈ [−P1, P1],
Si (V1 + Ei ), V1 ∈ [−Pi+1,−Pi ], (i = 1, 2, . . .),

(2)

where E0 = 0, while Ei > 0 and Pi > 0, satisfying
Ei < Ei+1 and Pi < Pi+1, (i = 1, 2, . . .), in which
Pi denotes the voltage values at the break points.
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Fig. 1 Chua’s circuit with periodic excitation

By introducing the transformations x = V1
E1
, y =

V2
E1
, z = iL

E1R1
and τ = t

R1C2
, (1) can be written in a

non-dimensional form as

dx
dτ

= −α(1 + δ)x + αy − α f (x) + A sin(Ωτ),

dy
dτ

= x − y + z,
dz
dτ

= −βy

(3)

where α = C2
C1
, β = R2

1C2
L1

, A = IG R1E1C2
C1

, Ω =
ωR1C2 and f (x) can be written as

f (x) =
⎧
⎨

⎩

mi (x − ki ), x ∈ [Qi , Qi+1], (i = 1, 2, . . .),
m0(x − k0), x ∈ [−Q1, Q1],
mi (x + ki ), x ∈ [−Qi+1,−Qi ], (i = 1, 2, . . .),

(4)

with m0 = S0
E1
, k0 = 0, mi = Si

E1
,ki = Ei

E1
, Qi = Pi

E1
,

(i = 1, 2, . . .). System (3) with no external excitation
(A = 0) may evolve from a stable fixed point to a peri-
odic orbit and to a double scroll, i.e., the strange attrac-
tor of Chua’s circuit, with the variation in parameters
for the two break points of the piecewise-linear resis-
tor [27]. Furthermore, a n-scroll attractor family was
obtained as a result of generalization of Chua’s circuit
with additional break points in the nonlinear charac-
teristic of Chua’s diode [28]. Due to the generalization
of the nonlinear characteristics, it has been shown that
increasing the number of scrolls in all state variable
directions is also possible [29].

The external excitation may also cause the oscilla-
tor to evolve from a periodic orbit to n-scroll attrac-
tors. However, when an order gap exists between Ω

and the natural frequency of the autonomous oscilla-
tor, effects of two timescales may appear. Here, we
fix the parameter Ω = 0.01 and other parameters

at O(1.0). Obviously, the state variables x, y, z may
oscillate mainly according to the natural frequency,
i.e., O(dx/dτ, dy/dτ, dz/dτ) ≈ O(1.0) ≡ T1, while
the exciting term w oscillates periodically according
to another much smaller scale, i.e., O(dw/dτ) ≈
O(0.01) ≡ T2, leading to a coupling between the two
scales T1 and T2, whichmay cause bursting oscillations
in the system.

3 Bifurcation analysis

Since there exists only one nonlinear term included in
the piecewise-linear function in the oscillator, between
each two neighboring break points, the vector field is
linear, though non-smooth behaviors may appear at the
break points. Therefore, one may obtain a set of corre-
sponding linear subsystems according to the situation
of the piecewise-linear function. The steady states of
these linear subsystems in periodic movements may
be employed to understand the behaviors of the whole
system (3), which here are called nominal equilibrium
orbits (NEO).

3.1 Nominal equilibrium orbits (NEO)

For the linear subsystems with the periodic excitation
A sin(Ωτ), the nominal equilibrium orbits (NEO) can
be expressed in the form
⎧
⎨

⎩

x = X0 + A1 sin(Ωτ + θ1),

y = Y0 + A2 sin(Ωτ + θ2),

z = Z0 + A3 sin(Ωτ + θ3),

(5)

where X0,Y0, Z0, Ai , θi , (i = 1, 2, 3) are constants
to be determined by balancing the same terms of each
corresponding linear equations. For example, the con-
stants related to NEOi in the form (5) for the segment
with f (x) = mi (x − ki ) of the piecewise-linear func-
tion f (x) can be expressed as

X0 = mi ki
Π1

, Y0 = 0, Z0 = −mi ki
Π1

,

A1 = A
√

Π1√

α2Π2Π
2
1−2α2Ω2Π1+Ω2(Π2+α2−2αβ+2αΩ2)

,

A2 = AΩ√

α2Π2Π
2
1−2α2Ω2Π1+Ω2(Π2+α2−2αβ+2αΩ2)

,

A3 = Aβ
√

α2Π2Π
2
1−2α2Ω2Π1+Ω2(Π2+α2−2αβ+2αΩ2)

,

θ1 = arctan
[

Ω(αβ−αΩ2−Π2)

αΠ1Π2−Ω2

]
,

θ2 = arctan
[

αΠ1(β−Ω2)−Ω2

Ω(β−Ω2−α−αΠ1)

]
,

θ3 = π
2 − θ2,

(6)
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where Π1 = 1 + δ + mi ,Π2 = Ω2 + (β − Ω2)2. The
associated characteristic equation can be written as

λ3 + (1 + αΠ1)λ
2 + (β − α − αΠ1)λ + αβΠ1 = 0,

(7)

which yields the nominal stability condition, given as

{
1 + αΠ1 > 0, αβΠ1 > 0,
αβΠ1 − (1 + αΠ1)(β − α + αΠ1) > 0,

(8)

implying that when the conditions in (6) are satisfied,
the trajectory may settle down to theNEOi once Qi <

x < Qi+1.

3.2 Bifurcations

There may exist two types of bifurcations related to
NEOs: the regular bifurcations and the non-smooth
bifurcations. The regular bifurcations may occur when
at least the real part of one eigenvalue related to NEOs
becomes zero, which may cause the change in the
properties of NEOs. Two critical conditions related to
codimension-1 bifurcations of NEOs can be obtained.
One can be expressed as

FB: 1 + αΠ1 = 0, (9)

withαβΠ1 > 0, αβΠ1−(1+αΠ1)(β−α+αΠ1) > 0,
at which a zero eigenvalue can be obtained, implying a
fold bifurcation of the limit cycle may occur, while the
other can be written as

HB: αβΠ1 − (1 + αΠ1)(β − α + αΠ1) = 0, (10)

with 1+ αΠ1 > 0, αβΠ1 > 0, at which a pair of pure
imaginary eigenvalues exists, leading to Hopf bifurca-
tion of the limit cycle.

When the trajectory passes across the break points,
non-smooth bifurcations may take place, which can
be explored by the generalized differential of Clarke
[30]. Assuming Ji and Ji+1 denote the two Jacobian
matrices of a equilibrium state on both sides of a non-
smooth boundary, respectively, then the generalized
Jacobian matrix at the break point can be expressed
as Jq = q Ji + (1 − q)Ji+1, where q is an auxiliary
parameter with q ∈ [0, 1]. When q varies from 0 to 1,
Jq may change from Ji+1 to Ji , implying the parameter

q causes the smooth transition of Jacobian matrix from
one side to the other side of the non-smooth boundary.

When at least one of the eigenvalues of Jq passes
across axes for q varying from 0 to 1, a non-smooth
bifurcation may take place. Note that the Jacobian
matrix related to NEOi can be written in the form

Ji =
⎛

⎝
−α(1 + δ + mi ) α 0

1 −1 1
0 −β 0

⎞

⎠ . (11)

By introducing the auxiliary parameter q, the char-
acteristic equation of the generalized Jacobian matrix
related to the break point Qi+1 can be expressed as
Jq = q Ji + (1 − q)Ji+1 q ∈ [0, 1], which can be
further written in the form

λ3 + h1λ
2 + h2λ + h3 = 0, (12)

where

h1 = 1 + α + δ + α(q mi + mi+1 − q mi+1),

h2 = αδ + β + α(q mi + mi+1 − q mi+1),

h3 = αβ(1 + δ + q mi + mi+1 − q mi+1).

(13)

Similarly, with the variation in q from 0 to 1, the eigen-
values of the generalized Jacobian may pass across the
axes, leading to two types of non-smooth bifurcations
with codimension-1. For the conditions

NSHB: h3 = 0, (h1 > 0, h1 h2 − h3 > 0), (14)

a zero eigenvalue appears, implying a non-smooth fold
bifurcation ofNEOi maybe observed at the break point
Qi+1, while a non-smooth Hopf bifurcation of NEOi

may take place when

NSHB: h1 h2 − h3 = 0, (h1 > 0, h3 > 0). (15)

at which a pair of pure imaginary eigenvalues can be
obtained.

Remarks:

• The bifurcations at the break points are different
from the same types of bifurcations in smooth vec-
tor fields, though the influence of the bifurcations
on the trajectories of the dynamical system may be
similar.
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Fig. 2 Characteristics of piecewise-linear function

• Theoretically, there may also exist other types
of non-smooth bifurcations such as non-smooth
Bogdanov–Takens bifurcation of cycle for h2 =
0, h3 = 0(h1 > 0).

• Multiple crossing bifurcation with high codimen-
sion may be observed when the conditions for two
types of bifurcations are satisfied for the auxiliary
parameter q varying from 0 to 1 and lead to the
influence of both two types of bifurcations on the
trajectories.

3.3 Bifurcations for specific parameters

In order to explain the bifurcations in more detail, now
we fix the parameters at

α = 9.0, β = 14.28, δ = 0.1 Ω = 0.01 (16)

while the parameters in the piecewise-linear function
f (x) are taken as

m0 = − 1
7 , m1 = 2

7 , m2 = − 3
7 , m3 = 4

7 ,

Q1 = 1.0, Q2 = 2.15, Q3 = 3.6, Q4 = +∞,

(17)

which is plotted in Fig. 2. The other related parame-
ters can be computed at k1 = 3

2 , k2 = 31
12 , k3 = 349

80
because of the continuity of f (x) combining with the
condition k0 = 0.

The break points on the piecewise-linear function
correspond to six cross sections, denoted by �±i :
[(x, y, z) | x = ±Qi], (i = 1, 2, 3), which divide

the phase space into seven regions, represented by D0

and D±i , (i = 1, 2, 3). In each region, the trajec-
tory is governed by a corresponding linear subsystem,
which has a nominal equilibrium orbit, leading to seven
NEOs, expressed by NEO0 and NEO±i (i = 1, 2, 3),
respectively. Note that the properties of twoNEO±i are
the same because of the symmetry of the system. The
eigenvalues related to NEO0 and NEO±i (i = 1, 2, 3)
can be computed, respectively, as

λ
(0)
1 = −9.531, λ

(0)
± = −0.0506 ± 3.596 I,

λ
(±1)
1 = −13.151, λ

(±1)
± = −0.1600 ± 3.676 I,

λ
(±2)
1 = −7.148, λ

(±2)
± = +0.0524 ± 3.474 I,

λ
(±3)
1 = −15.622, λ

(±3)
± = −0.2104 ± 3.702 I,

(18)

from which one may find that NEO±2 are of unstable
saddle-type,while otherNEOs are of stable focus-type.
Furthermore, at the cross sections �±2 for x = ±2.15
and�±3 for x = ±3.6, the characteristic equations can
be, respectively, expressed as

λ3 +
(
493

70
+ 45

7
q1

)

λ2 +
(
3963

350
+ 45

7
q1

)

λ

+21573

250
+ 459

5
q1 = 0,

λ3 +
(
113

70
− 9q2

)

λ2 +
(
7113

350
− 9q2

)

λ

+53703

250
− 3213

25
q2 = 0, (19)

where q1, q2 ∈ [0, 1], fromwhich onemay find that for

q1 = − 143
450+ 14

√
67

450 ≈ 0.19153 andq2 = 773
630− 2

√
67

45 ≈
0.86319, the two characteristic equations in (17) can be
written in the same form as

λ3+
(

5 + 2
√
67

5

)

λ2+
(
232

25
+ 2

√
67

5

)

λ+ 1428

25
+ 714

√
67

125
.

(20)

A pair of pure imaginary eigenvalues as well as a neg-
ative real eigenvalue can be obtained, approximated at

λ1 = −8.274 λ± = 3.5432 I, (21)

implying a non-smoothHopf bifurcation occurs, which
is of supercritical type demonstrated by further com-
putation.
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Remarks:

• The NEO0 and NEO±i , (i = 1, 2, 3) can also be
regarded as generalized fixed points, located on the
cross section �T : [(x, y, z) | τ = τ0 + 2jπ

/
,

( j = 1, 2, · · ·)]. In the linear subsystems, they
may become foci, centers, saddle points, and even
degenerate cusp points. The stabilities of them
may influence the trajectory of the whole nonlinear
piecewise-linear system.

• Since all the subsystems are linear, a fold or a
Hopf bifurcation cannot result in the jumping phe-
nomenon or limit cycle related to the general-
ized fixed point. However, at the break points,
such types of non-smooth bifurcations may cause
the trajectory to behave in the corresponding
characteristics.

4 Evolution of bursting oscillations
as well as the mechanism

Because of the order gap between the exciting fre-
quency and the natural frequency, bursting oscillations,
which always behave as a combination of small- and
large-amplitude oscillations, can be observed. For the
parameters fixed in (14) and (15), the evolution of
bursting oscillations with the variation in the parame-
ter A will be investigated, since the amplitude of the
external excitation may determine whether the trajec-
tory passes across the break points or not. We find
that when A is small, for example, A = 5.0, only
periodic movements with the frequency Ω in (3) are
observed, since the trajectory does not pass across any
break points. With the increase in A, the amplitude
of the periodic oscillation may pass across the break
points, which leads to bursting oscillations. Now, we
discuss the bursting oscillations in dependence on A.
Here, we focus on two typical cases with A = 20.0
(Case A) and A = 40.0 (Case B), respectively, in
which the trajectories of the bursting oscillations may
pass across different numbers of non-smooth cross
sections.

All the numerical results of the phase portraits as
well as the related time histories following are obtained
by the four-order variable step Runge–Kutta method,
with the step length τ = 0.0001 and the initial con-
dition (x0, y0, z0) = (0.1, 0.1, 0.1).

4.1 Bursting oscillations for Case A

For the case with A = 20.0, only two non-smooth
cross sections �±1 for x = ±1.0 involve the trajec-
tory of the oscillations. The two cross sections divide
the phase space into three regions D0 and D±1 corre-
sponding to three different stable nominal equilibrium
orbits, denoted by NEO0 and NEO±1, governed by
three linear subsystems, respectively.
Bursting oscillations Figure 3 gives the phase por-
trait of the bursting oscillations for A = 20.0, and the
related time history of y is plotted in Fig. 4.

It can be found that the phase portrait keeps the sym-
metric property of the original system, while the trajec-
tory passes across three regions D0 and D±1, which can
be divided into four segments by the two cross sections
�±1, determined by the break points with x = ±1.
Abrupt changes can be observed when the trajectory
moves at the non-smooth boundaries because of the
abrupt changes in the governing linear subsystems.

From the time history in Fig. 4, it can also be found
that the variables may alternate at the break points
between two types of stages corresponding to almost

-2 -1 0 1 2
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Fig. 3 Phase portrait on the (x, y) plane for A = 20.0
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Fig. 4 a Time history of y and b locally enlarged time history
of y for A = 20.0
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Fig. 5 Overlap of the phase portrait and the NEOs

no oscillation and large-amplitude oscillations, respec-
tively, i.e., between quiescent states and repetitively
spiking states.

The trajectory of the bursting oscillations in Fig. 3
consists of four stages of quiescent states (QSs) and
four repetitive spiking states (SPs), connected by the
breaking points at the switching boundaries.
Mechanism To reveal the mechanism of the bursting
oscillations, we plot the overlap of the phase portrait
and all the possible NEOs of the linear subsystems in
Fig. 5. Note that there exist only three NEOs since
the trajectory only passes across two cross section�±1

with x = ±1, implying that the phase space of the
trajectory can be divided into three regions, in which
there exists sole stable NEO, respectively.

The trajectory, starting from the point P1, moves
around NEO0 with small-amplitude oscillations and
finally settles down to NEO0 to form QS1, since
between the two cross sections �±1, the vector field is
linear and NEO0 is a stable attractor. When the trajec-
tory arrives at the point at A2, located on the switching
boundary�+1, it may tend toNEO+1, which is a stable
attractor for the linear subsystem between the two cross
sections �+1 and �+2 : [(x, y, z) | x = 2.15], leading
to repetitive spiking oscillations with large-amplitude
SP2, since the trajectory at the point A2 is not exactly
on the focus-type NEO+1.

The repetitive SP2 settles down to NEO+1 gradu-
ally because of the sole stable NEO+1 in the linear
subsystem between the two cross sections �+1 and
�+2 : [(x, y, z)|x = 2.15], which leads to the second
stage of quiescence (QS2). The trajectory then moves
almost strictly alongNEO+1 until it arrives at the point

A3, located on the cross section �+1 with x = +1.
When the trajectory passes across the switching bound-
ary �+1, it may tend to the sole stable NEO0 between
the two cross sections �±1, in which the vector field is
governed by another linear subsystem. Repetitive spik-
ing SP3 occurs since there exist some distance between
the point A3 and focus-type NEO0.

The amplitudes of the oscillations of SP3 decrease
gradually, and the trajectory finally settles down to
NEO0 to form QS3. When the trajectory moves at the
point A4, located on the cross section �−1, repetitive
spiking SP4 occurs for the similar reason. The spiking
oscillations will settle down to NEO−1 to form QS4
until the trajectory arrives at the point A1, located on
�−1. Repetitive spiking SP1 takes place, which may
finally settle down to NEO0 to form the quiescence
QS1. Once the trajectory arrives at the starting point
P1, one period of the movement is finished.
Oscillations in SPs The frequency as well as ampli-
tudes of the oscillations of the repetitive spiking SP2

can be approximated by the eigenvalues related to
NEO+1. Note that the pair of the complex conjugate
eigenvalues of NEO+1 can be expressed as λ

(2)
± =

−0.1600 ± 3.676 I, which determines the decrease in
the amplitudes as well as the frequency of the oscilla-
tions down toNEO+1. The frequency can be computed
at Ω2 = 3.676, which agrees well with the numerical
simulation in Fig. 4 at Ω2N = 2π

T0
= 2π

1.722 = 3.645.
The decrease in the amplitudes of the oscillation

in the y-direction may be approximately described
by YA2e−0.160τ , where YA2 is the y-distance from
the point A2 to NEO+1, i.e., the y-distance between
NEO0 and NEO+1 at x = 1, approximated at
YA2 ≈ 0.00045. Therefore, one may approximate the
y-distance between the point P2 and NEO+1 at YP2 =
YA2e−0.160×3.645/2 = 0.00036, which agrees with the
numerical simulation in Fig. 4 at YP2 = 0.000382.

Similarly, the frequency as well as the amplitudes of
the bursting oscillations SP3 in Fig. 5 can be approxi-
mated by the eigenvalues related to NEO0. For exam-
ple, the theoretical frequency can be obtained by the
imaginary part of the corresponding complex conju-
gate eigenvalues at Ω2 = 3.596, which agrees well
with the numerical result in Fig. 4 at Ω2N = 2π

T1
=

2π
1.7292 = 3.6336.

Remarks:

• For smooth systems with two timescales, regular
bifurcations exist at the transitions between QSs
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and SPs. However, for the non-smooth system, the
change between QSs and SPs may be caused by
the alternations between different governing sub-
systems with different attractors at the non-smooth
boundaries.

• All the repetitive spiking oscillations in Fig. 5 cor-
respond to the transient process from the points on
the cross sections to the stable NEOs in different
regions, which therefore can be obtained theoreti-
cally based on the associated linear subsystems as
well as the initial point on the cross sections.

4.2 Bursting oscillations for Case B

With the increase in A, more non-smooth cross sec-
tions involve the phase portraits of the dynamical sys-
tem. For the case with A = 40, the trajectory passes
across all the six non-smooth boundaries, determined
by the break points in Fig. 2, implying that the oscil-
lations visit all the seven regions, divided by the cross
sections. Therefore, the trajectory of the system is gov-
erned by the seven linear subsystems in turn, which
have different types of NEOs, leading to more compli-
cated bursting oscillations.

Bursting oscillations Figure 6a gives the phase por-
trait of the bursting oscillations on the (x, y) plane
for A = 40, from which one may find that the tra-
jectory passes across the boundaries �±i, i = 1, 2, 3)
at x = ±1,±2.15,±3.6, respectively.

To show more details of the trajectory, locally
enlarged phase portraits in every neighborhood of the
boundaries are presented in Fig. 6b–g, where the tra-
jectory are connected by certain notations, such as
B3 −→ B3 . . .. Qualitatively changes on the trajectory
can be observed at the cross sections, which lead to
alternations between quiescent states (QSs) and repeti-
tive spiking states (SPs). For the periodic bursting oscil-
lation in Fig. 6a, there exist eight types of QSs and the
same number of SPs.

For the trajectory, starting from point B1, it moves
along B1B2 to form QS1, while at point B2 on �−3,
repetitive spiking oscillations SP1 occurs until the tra-
jectory arrives at the �−2. With the evolution of non-
dimensional time, the amplitudes of the repetitive spik-
ing decrease gradually to zero alongB5B6 to formQS2.
At the pointB6 on the cross section�−1, (SP2) occurs,
resulting in repetitive spiking oscillations, which may
settle down to QS3 along B6B7. At point B8 on �+1,
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Fig. 6 Phase portrait on the (x, y)plane for A = 40.0 and locally
enlarged portrait in the neighborhood of �i (i = ±1,±2,±3)
from b to g

SP3 takes place, leading to the oscillations around
B9B9. When the trajectory passes across the bound-
ary �+2, SP4 occurs, yielding the oscillations between
B10 toB12. The boundary�+2 may cause a decrease in
the amplitudes of the oscillations, which finally leads
to QS4 to the point C11 via C12.

The related time history of y is presented in Fig. 7,
which keeps the O2 symmetry (see the parts RE1 and
RE2 in Fig. 7a). Therefore,we only need to consider the
property of the segment RE1, which can be extended
to another part of the time history. The part RE1 of
the time history is locally enlarged in Fig. 7b–d, from
which we see that there exist four stages corresponding
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Fig. 7 a Time history of y and locally enlarged time history of
y in (b–d)

to repetitive spiking SPi , (i = 1, 2, 3, 4) on the time
history.

Now, we turn to the frequencies of different repeti-
tive spiking oscillations via the time history in Fig. 7.
We find that the frequencies of SP1 and SP2 in Fig. 7b
are constants, approximated by ΩSP1 = 2π

T1
≈ 3.581

and ΩSP2 = 2π
T2

≈ 3.603, respectively, which agree
very well with the imaginary parts of the pair of
complex conjugate eigenvalues related to NEO0 and
NEO+1 in (18) at Ω0 = 3.596 and Ω+1 = 3.676,
respectively.

However, the frequencies related to SP−4 and SP3

in Fig. 7b are not constants. Both the two spiking oscil-
lations can be divided into two parts with different fre-
quency by the non-smooth boundaries. For example,
the time history of SP−4 in Fig. 7b is located in Region
D−2 and D−1, which can be divided into two parts by
the cross section �−1, at which the amplitude of the
oscillation reaches it maximum value. From the locally
enlarged time history in Fig. 7c, d, the frequencies of
SP−4 located in D−2 and D−1 can be approximated
at Ω

(1)
SP1 = 2π

T3
≈ 3.5392 and Ω

(1)
SP2 = 2π

T4
≈ 3.681,

respectively.

Mechanism Since there exist six non-smooth bound-
aries �±i, (i = 1, 2, 3), which divide the phase space
into seven regions, denoted by D0 and D±i , (i =
1, 2, 3) (see Fig. 8), in each region, there exists one
linear subsystem, which results in one NEO, respec-
tively. All the seven NEOs are presented in Fig. 8,
from which one may find that NEO−i is symmetric
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Fig. 8 Non-smooth boundaries and NEOs in the different
regions

0 3 6 9
-0.012

-0.006

0.000

0.006

0.012
+2+1 +3

D+3D+2D0 D+1

NEO+1

NEO+3

NEO0 NEO+2
y

x

Fig. 9 Overlap of the phase portrait and the NEOs for x ≥ 0

to NEO+i , (i = 1, 2, 3), while NEO0 is symmetric to
itself along the axes x = 0 and y = 0.

Therefore, it is sufficient to only consider the half
structure of the phase portrait for x ≥ 0, which is sym-
metric to the left half part of the phase portrait. The
overlap of the phase portrait and the NEOs for x ≥ 0
is presented in Fig. 9, which can be used to reveal the
mechanism of the bursting oscillations.

Figure 10 shows enlarged details of the overlap,
fromwhich one reveals that critical changes exist when
the trajectory passes across the non-smooth bound-
aries. Furthermore, the qualitative changes at different
break points located on the boundaries are different.
For example, at the points P3 and Q6 on �+1, the tra-
jectory may alternate between small-amplitude oscil-
lations around NEO0 and small-amplitude oscillations
around NEO+1. At the points P6 on �+2 and Q2 on
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Fig. 10 Locally enlarged overlap a for 0 ≤ x ≤ 3 b for x ≥ 3

�+3, the trajectory may change from the state which
moves almost strictly along a special NEO to large-
amplitude oscillations, while the points P9 on�+3 and
Q4 on �+2 just separate the large-amplitude oscilla-
tions to relatively small-amplitude oscillations.

From above bifurcation analysis, we find that no
non-smooth bifurcation occurs at the boundary �+1,
while at the two boundaries �+2 and �+3, non-
smooth super-Hopf bifurcations can be observed. The
related frequency can be theoretically computed at
ωS = 3.5432, which agrees very well with the numer-
ical result at Ω

(1)
SP1 = 2π

T3
≈ 3.5392 via simulation

in Fig. 7c. Therefore, the transition of the trajectory
between Regions D0 and D1 is caused by the non-
smooth break points, leading to an attraction of the
trajectory to stable NEO0 and NEO+1, respectively.
However, the transitions of the trajectory at the points
P6 on�+2 andQ2 on�+3 between RegionD2 toD3 or
D4 to D3 are caused by non-smooth super-Hopf bifur-

cations, leading to the large-amplitude oscillationswith
the frequency related to super-Hopf bifurcations.

Now,we turn to themechanism of the bursting oscil-
lation in Fig. 6. The trajectory,which is locally enlarged
in Fig. 10, starting from the point P1 in Fig. 10a, moves
along NEO0 with oscillations caused by the distance
between the starting point and the focus-type stable
NEO0 to form SP1. The trajectory settles almost down
toNEO0 to formQS1, atP2 for example, until it arrives
at the break point P3 at the non-smooth boundary �+1

for x = 1. When the trajectory passes across �+1,
repetitive spiking (SP2) occurs, since P3 is not exactly
located on NEO+1, leading to the transient process to
the stable NEO+1.

When the trajectory settles down to NEO+1, it
moves almost strictly along NEO+1 to formQS2 until
it arrives at the break pointP6 at the non-smooth bound-
ary�+2 for x = +2.15, non-smooth super-Hopf bifur-
cation takes place, resulting in repetitive spiking oscil-
lations SP3. The frequency is determined by the fre-
quency associated with the Hopf bifurcation at P6,
though the system is governed by the linear subsys-
tem in Region D+2 with unstable NEO+2. Because of
the Hopf bifurcation at P6, the trajectory does not settle
down to stable NEO+2 but oscillates according to the
property of the non-smooth Hopf bifurcation.

When the trajectory oscillates via P8 to P9, located
on the non-smooth boundary �+3, a non-smooth Hopf
bifurcation occurs, which leads to the disappearance of
the oscillations with the frequency related to the Hopf
bifurcation. The trajectory then oscillates to settle down
to the stable NEO+3, the decrease in the amplitudes of
the oscillations canbedeterminedby the real part,while
the frequency can be approximated by the imaginary
part of the pair of the conjugate eigenvalues related
toNEO+3, obtained by the linear subsystem in Region
D+3.This is the reason why there exist two frequencies
related to SP3.

When the trajectory settles down to NEO+3 at P10,
it moves almost strictly along NEO+3 to form QS4
until it arrives at the point Q2, located on �+2. A non-
smooth Hopf bifurcation occurs, leading to repetitive
spiking oscillations SP4, the frequency of which in
Region D+3 can also be estimated by the frequency
of non-smooth Hopf bifurcations, though the system is
governed by the linear subsystem in Region D+2 with
unstable NEO+2.

Once the trajectory oscillates to the point Q4 at
the boundary �+2, a non-smooth Hopf bifurcation
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causes the transition from oscillations with Hopf bifur-
cation frequency to oscillations tending toNEO+1. The
amplitudes as well as the frequency of SP4 in Region
D+1 can be approximated by the pair of the conjugate
eigenvalues related toNEO+1.When the trajectory set-
tles down to NEO+1, it moves almost strictly along
NEO+1 to formQS5 until it arrives atQ6, located on the
non-smooth boundary �+1. Transition from NEO+1

to repetitive spiking oscillation SP5 around NEO0 is
observed, the amplitudes of the oscillations as well as
the frequency can be approximated by the pair of com-
plex conjugate eigenvalues related to NEO0 since the
system is governed by the linear subsystem in Region
D0.

The details of the trajectory of the right half side
with x ≤ 0 are symmetric and similar to the above
description, which we omit here for simplicity. When
the trajectory returns to P1, one periodic movement of
the trajectory is finished, which undergoes eight stages
of QS and SP, respectively. The transition between
QSs and SPs may be caused by the break points to
jump between different NEOs in associated regions
or caused via non-smooth Hopf bifurcations to alter-
nate between NEOs and repetitive spiking with large-
amplitude oscillations.

Remarks:

• When the trajectories pass acrossmore non-smooth
cross sections, more linear subsystems involve the
phase portraits, which may lead to more compli-
cated behaviors of the bursting oscillations.

• The transitions between QSs and SPs may be
caused by abrupt changes in different subsystems
or by non-smooth bifurcations at the non-smooth
boundaries.

• The overlap betweenNEOs in different subsystems
and the transformed phase portraits which describe
the relations between the state variables and the
slow-varying exciting term reveal clearly the evo-
lutions of bursting oscillations.

The abrupt changes for the forms of the bursting
oscillations with the variation in the parameter A can
also be demonstrated by the evolution of Lyapunov
exponents, one of which is also zero, while the other
three are shown in Fig. 11.

From Fig. 11, it can be found that all the three Lya-
punov exponents are negative with the variation in A,
which implies that no chaos phenomenon can be found
in the oscillator. However, the largest Lyapunov expo-

(a)

(b)

(c)

Fig. 11 Three Lyapunov exponents with the variation in A

nent may reach its extreme values when A = 8.6293,
A = 22.9524, and A = 31.6229, respectively, which
corresponds to the situations that the extreme values of
x of the trajectories just reach the break points of the
piecewise-linear function at x = 1.0, x = 2.15 and
x = 3.6, respectively. Therefore, the values of excit-
ing amplitude A when the largest Lyapunov exponent
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reaches its extremevalues correspond to the separations
of different forms of oscillations of the system.

5 Conclusions

Bursting oscillations have been observed in periodi-
cally excited piecewise-linear dynamical system with
an order gap between the exciting frequency and the
natural frequency. For the case when the exciting fre-
quency is far less than the natural frequency, the whole
exciting term w = A sin(Ωt) can be regard as a slow-
varying parameter and used as a bifurcation parameter.
The corresponding bifurcations with the variation in
w can be employed to account for the critical changes
in the trajectories via the transformed phase portraits,
which describe the relationships between the state vari-
ables and w.

Furthermore, when multiple segments exist in the
continuous piecewise-linear functions, multiple cross
sections determined by the break points divided the
phase space into several regions corresponding to dif-
ferent linear subsystems, which behave in different
NEOs.With the increase in the amplitude of the excita-
tion, the trajectory may pass across different numbers
of cross sections, leading to different forms of bursting
attractor.

Unlike the connections between QSs and SPs via
regular bifurcations in smooth vector fields, for the
bursting oscillations in piecewise-linear systems, the
transitions between QSs and SPs may be caused by
non-smooth bifurcations or the critical changes caused
by the abrupt alternations between two different sub-
systems on both sides of non-smooth boundaries.

Here, wewould like to suggest that the special forms
ofmovements in bursting oscillations should be consid-
ered whenmultiple scales in frequency domain involve
the practical non-smooth systems, since such types of
movements may exist, which may influence the prop-
erties of the systems.
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